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Author’s Reply to Comment
by Kenneth Wang

W. H. T. Lou*
Aerospace Corporation, El Segundo, Calif.

HE solution by Wang and Ting' was obtained by assum-

ing V, contained in the term [(gRo/V?) — 1], equal to the
initial entry speed V;, which is a constant. After initial por-
tion of entry [say, V/(gRo)*? less than 1], V is quite different
from the initial entry speed V;; consequently, the solution no
longer applies. The numerical values (0.986 and 10°32’) cal-
culated by Wang? agree well with both the second-order solu-
tion? and the exact numerical solution, Figs. 8¢ and 8d, but
they are for “from entry to skip,” which is the initial portion
of the overall re-entry trajectory dealt as a whole by the
second-order theory.> When the second-order solution ap-
plies only to the initial portion of the overall re-entry trajec-
tory [say, for V/(gRo)V? = 2V2 to 1 or approximately 11, the.
second-order solution reduces to Wang’s solution.*
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Comment on ““Stability of Pressure
Waves in a Combustion Field”’

WARREN C. STRAHLE* AND WiLLiaM A. SIRIGNANOT

Princeton University, Princeton, N. J.

N his recent technical note, Rosen! made an illuminating
and welecome contribution to the field of combustion in-
stability. However, several points are worthy of clarifica-
tion. It is assumed in this note that the physical and chemi-
cal combustion processes are represented by a one-step rate
controlling reaction that is a function of chamber conditions
at the instant of reaction. It should be noted, however, that
finite time delays occur and are important in actual com-
bustion chambers. Although it is true that simple chemical
reaction rates may follow such a one-step, instantaneous law,
other processes such as mixing, vaporization, or a complex
chemical reaction do not. When the characteristic times
of these more complex processes are of the same order as the
wave propagation time, important interactions occur.
After a transformation to a Lagrangian coordinate system,
the author states that the linearity of the governing differen-
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tial equation for the pressure outside of the combustion zone
indicates that the pressure waves “propagate in a trivial way
without growth, decay, or dispersion.” This usually is not
the case for ordinary gases. The linearity of the differential
equations demands that the acoustic impedance (which equals
the square root of minus the partial derivative of pressure
with respect to specific volume at constant entropy) be con-
stant with pressure or volume. This demand has been satis-
fied by the choice of the equation of state. This equation of
state never is true for polytropic gases and is true only for
such materials as solids which obey Hooke’s Law. A realistic
choice of a state equation would have shown a distortion of
the waveform due to nonlinear effects and thus a possible
shock formation. Once the shock has formed, one cannot
say there is ‘no growth, decay, or dispersion.” For example,
the asymptotic behavior of the N wave is well known to be
such that the shock strength decreases in inverse proportion
to the square root of time, and the width of the wave increases
as the square root of time.? Also, note that care must be
taken in applying the transformation when a shock or detona-
tion discontinuity is present, since the Jacobian of the trans-
formation becomes discontinuous at such points. The trans-
formation must be applied separately on each side of the dis-
continuity, and then the coordinates should be matched at
the point of discontinuity.

Finally, and most important, the author has implied that,
although boundary conditions may affect the stability eri-
teria for certain practical configurations, the local interaction
between a pressure wave and the combustion process is most
important in determining the stability criteria. This gen-
erally is not the case, since dissipation phenomena introduced
through the boundary conditions usually are as important
as the forcing function introduced through the combustion
process. For instance, in liquid rocket engine instability,
there is a loss of oscillation energy by convection of the mean
flow out the nozzle. Furthermore, oscillation impedance
of the nozzle usually causes a reflected wave to have a lower
energy than the incoming wave. Both of these effects are of
the same importance as the forcing function, which is of the
order of the mean flow. Therefore, in practical problems,
one cannot look at local stability criteria but must concern
himself with stability in the large.
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Reply by Author to W. C. Strahle and
W. A. Sirignano

GeraLp RosEN*
Martin Marietta Corporation, Baltimore, Md.

HE preceding comment by Strahle and Sirignano dis-
cusses two aspects of Ref. 1. Some practical limitations
of the idealized mathematical model are mentioned. It then
is asserted that local stability criteria should not be studied
and that the stability problem is always essentially global
in character, like a boundary-value or eigenvalue problem.
With regard to the practical limitations of the model, it
should be pointed out that a more general form for the
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process relation [Eq. (4)]f in place of the tangent-gas law
[Eq. (9)] brings in additional nonlinearity that has trivial
consequences, if compared to the nonlinear interaction be-
tween pressure waves and the combustion processes. Al-
though the equations become less transparent, conclusions
derived from the mathematical model are not modified essen-
tially if Eq. (9) is replaced by a polytropic process relation.}
Therefore, in order to make new and interesting phenomena,
clearly evident, convective nonlinearity is suppressed in the
theoretical treatment! by evoking the tangent-gas law.
Emphasizing the shortcomings of a burning rate function like
Eq. (8), a representation of the combustion mechanism which
takes account of vaporization and chemical reaction but can-
not take account of physical mixing and melecular diffusion
(processes that are rate-controlling in many combustion
fields) is earnest criticism. By introducing a time delay
function in place of Eq. (8), by linearizing the system of equa-
tions, and by supplementing the equations that result with
boundary conditions, it is possible to obtain a resonance-type
mechanism for instability, a mechanism that does not appear
in the idealized model of Ref. 1. Yet the issue is not whether
a representation of the combustion mechanism like Eq. (8)
is of completely general practical interest, but rather whether
it is generally less appropriate than the ad hoc introduction of
a time delay function. Tt certainly is interesting that a
mechanism for instability exists even if processes associated
with a time delay (such as physical mixing and molecular
diffusion) are not rate-controlling. In fact, this “friction
term” interaction between pressure waves and the com-
bustion processes must appear in an all-embracing mathe-
matical theory, one with additional equations for mixing and
diffusion, because the idealized mathematical model in Ref.
1 is the limit of such a theory with “time delays” permitted
to vanish. Furthermore, it is questionable whether a reso-
nance-type mechanism for instability can be derived in rigorous
fashion from the complete set of governing equations in an
all-embracing mathematical theory.§ No one can argue
that the complicated and variegated combustion fields of
practical interest are not worthy of analysis from comple-
mentary points of view.

For practical situations that are described approximately
by the idealized model, consider whether the mechanism for
instability is essentially local in character, as asserted in
Ref. 1. Provided that it is appropriate to relate the idealized
mathematical model to an actual combustion field, Eq. (19)
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governs the dynamics of pressure waves in the region of active
combustion. Observe that the equation has the deflagration
solution P = P, = const, with P, interpreted physically as
the average “chamber pressure” for steady, normal com-
bustion. In the neighborhood of the P = P, solution, the
equation has the general acoustical perturbative solution
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1 Equations quoted arein Ref. 1.

1 For example, the necessary and sufficient condition for stable
pressure waves {m < [1 + (2/«)]} still is obtained if one replaces
Eq. (9) with a polytropic process relation, as one may deduce easily
from the results in Ref. 2.

§ Attempts by the author to obtain theoretical results of this
nature were not fruitful.
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where the €’s are arbitrary small constants, €, <« 1, the ks
denote wave-numbers in ¢ space for acoustical disturbances
that are consistent with conditions at a remote boundary
(well outside the region of active combustion), the &'s and
#’s denote phase constants that are prescribed by the same
boundary conditions, and the u’s and »’s are given by

M = + ( 2 — kn2)1I2

o } lk.?
Vo =

Mo = X

2 2
© (b — e } ka2 2 x2]

Vn
with the abbreviation

olaim + 1)P21 — b(m — 1)P2]
(1 + wo)a

Clearly, the P = P. solution is stable if all of the u’s are
positive and unstable if any u, is negative. But, inde-
pendent of the magnitude of each admissible wave number
k., (or phase constants ¢, and 6,), each u, is positive (negative)
if the parameter x is positive (negative). Thus the stability
depends entirely on the sign of x and does not depend on
boundary conditions that fix the &’s, the &s, and the §’s.
Hence the mechanism for instability is essentially local in
character. The condition for stability, namely, x > 0, is
recast in a neat form by introducing the effective polytropic
index, as by Eq. (27):

kK = (b/aP.) — 1

X =

Then the necessary and sufficient condition for pressure wave
stability is obtained asl

m < [1 4 (2/1)]

a result derived by alternative considerations and reported
in Ref. 1.
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I Note that, if this condition for pressure wave stability is
satisfied, it is satisfied by only a slim margin, since m ranges be-
tween 1 and 3 in practical cases, while [1 + (2/«)] ranges be-
tween 2 and 3 for real gases. For larger values of the ‘‘chamber
pressure”’ P, pressure wave stability is less likely; the rate-
controlling physical and/or chemical processes usually are asso-
clated with a larger value for m at higher pressures, binary and
ternary molecular processes playing a more significant role.

Comments on “‘Free Vibration of a

Damped Elliptical Plate”

D. J. Jouns*
College of Aeronautics, Cranfield, England

N Ref. 1, results are presented for the two lowest eigen-
frequencies of a clamped-edge elliptical plate. It should
be pointed out, however, that only one of the eigenfrequencies
determined has any physical significance, viz., the solution
corresponding to A% since the assumed modal form ¢ can-
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